
COMPILER-DESIGN LAB 

LAB Exercises 

Consider the following mini Language, a simple procedural high-level 

language, only operating on integer data, with a syntax looking vaguely like 

a simple C crossed with Pascal.  The syntax of the language is defined by the 

following BNF grammar:  

<program> ::= <block> 

<block> ::= { <variabledefinition> <slist> } 

          | { <slist> } 

<variabledefinition> ::= int <vardeflist> ; 

<vardeflist> ::= <vardec> | <vardec> , <vardeflist> 

<vardec> ::= <identifier> | <identifier> [ <constant> ] 

<slist> ::= <statement> | <statement> ; <slist> 

<statement> ::= <assignment> | <ifstatement> | <whilestatement> 

              | <block> | <printstatement> | <empty> 

<assignment> ::= <identifier> = <expression> 

               | <identifier> [ <expression> ] = <expression> 

<ifstatement> ::= if <bexpression> then <slist> else <slist> endif 

                | if <bexpression> then <slist> endif 

<whilestatement> ::= while <bexpression> do <slist> enddo 

<printstatement> ::= print ( <expression> ) 

<expression> ::= <expression> <addingop> <term> | <term> | <addingop> 

<term> 

<bexpression> ::= <expression> <relop> <expression> 

<relop> ::= < | <= | == | >= | > | != 

<addingop> ::= + | - 

<term> ::= <term> <multop> <factor> | <factor> 



<multop> ::= * | / 

<factor> ::= <constant> | <identifier> | <identifier> [ <expression>] 

      | ( <expression> ) 

<constant> ::= <digit> | <digit> <constant> 

<identifier> ::= <identifier> <letterordigit> | <letter> 

<letterordigit> ::= <letter> | <digit> 

<letter> ::= a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z 

<digit> ::= 0|1|2|3|4|5|6|7|8|9 

<empty> has the obvious meaning 

Comments (zero or more characters enclosed between the standard C/Java-

style comment brackets /*...*/) can be inserted.   The language has 

rudimentary support for 1-dimensional arrays. The declaration int a[3] 

declares an array of three elements, referenced as a[0], a[1] and a[2]. Note 

also that you should worry about the scoping of names.  

A simple program written in this language is:  

{ int a[3],t1,t2; 

  t1=2;  a[0]=1; a[1]=2; a[t1]=3; 

  t2=-(a[2]+t1*6)/(a[2]-t1); 

  if t2>5 then 

    print(t2); 

  else { 

    int t3; 

    t3=99; 

    t2=-25; 

    print(-t1+t2*t3);   /* this is a comment   on 2 lines */ 

  }  endif 

} 



 

EXERCISE: 1 

LEXICAL ANALYZER 

 

Aim: 

Design a Lexical analyzer for the above language. The lexical analyzer 

should ignore redundant spaces, tabs and new lines. It should also ignore 

comments. Although the syntax specification states that identifiers can be 

arbitrarily long, you may restrict the length to some reasonable value. 

 

Input:   

A statement or a programming block of above language. 

 

Output:     
Symbol table containing information about all the tokens. 

 

Algorithm: 

1. Identify the valid tokens i.e., identifiers, keywords, operators etc., in the 

given language according to above BNF grammar. 

 

2. Write a program for lexical analyzer to recognize all the valid tokens in 

the input program written according to the grammar. 

 

 

     



                                

                                               EXERCISE 2 

Lexical Analyzer using LEX 

 

Aim:  

Implement the lexical analyzer using JLex, flex or lex or other lexical 

analyzer generating tools.   

 

Input:  

A statement of above language. 

 

Output: 

Token type of all the identified tokens in the entered input statement. 

 

Algorithm: 

This should contain three distinct parts, each represented by %% 

 

1. Declaration Section: 

     Any C variable declarations or function prototype required for the 

actions. 

 

2. Rules Section: 

      This should consist of a list of regular expression along with their 

individual actions. Each action is executed only when the regular expression 

preceding it is recognized by lex. 

  

3. C Functions are defined: 
main ( ) 

{ 

….. 

….. 

….. 

} 

Lex Translator:  lex filename.l 

C Compiler:  cc lex.yy.c –lfl 

Run:    ./a.out 

More related programs 

1. Write a lex program to print the copy of input. 



2. Write a lex program to display the number of lines and number of 

characters in input. 

3. Write a lex program to replace the sequence of white spaces by a 

single blank from input. 

4.  Write a lex program to replace the sequence of white spaces by a 

single blank from input text file and add the contents in output text 

file.. 

 

 

                                              



 

EXERCISE 3 

Predictive Parser 

 

Aim:  

Design Predictive parser  for the given language 

Input:  

A string  w and a parsing table M for grammar G. 

 

Output:  

If  w is in L(G), a leftmost derivation of w ; otherwise , an error indication. 

 

Algorithm: 

 Initially, the parser is in a configuration in which it has $S on the stack with 

S, the start symbol of G on top, and w$ in the input buffer. The program that 

utilizes the predictive parsing table M to produce a parse for the input. 

  

set ip to point  to the first symbol of w$; 

repeat 

   let X be the top stack symbol and a the symbol pointed to by ip; 

   if X is a terminal or $ then 

          if  X=a then 

               pop X from the stack and advance ip. 

         Else error() 

Else 

    If M[X,a]=X->Y1Y2……..Yk   then begin 

               Pop X from the stack; 

               Push Yk,Y k-1,……..,Y1 onto the stack, with Y1 on top; 

   End 

   Else  error(); 

Until  X=$  /*stack is empty*/ 

 

 

                    

 

 

 

 



 

Exercise 4 

YACC 

 

Aim:  

Convert the BNF rules into YACC form and write code to generate abstract 

syntax tree. 

 

Input: 

A statement or expression of given language. 

 

Output: 

Input statement in the form of abstract syntax tree. 

 

Algorithm:  

This contains three sections 

          Declarations 

                  %% 

          Rules and actions 

                 %% 

          Supporting C- routines 

 

 

Yacc Translator:  yacc filename.y 

C Compiler:   cc y.tab.c 

Run:    ./a.out 

 

 



 

EXERCISE 5 

LALR   PARSER 

 

Aim:  

Design LALR bottom up parser for the above language.  

 

Input:  

An augmented grammar G’ 

 

Output:  

The LALR parsing table functions action and goto for G’ 

 

Method : 

1. Construct C={I0,I1,……,In}, the collection of sets of LR(1) items. 

2. For each core present among the set of LR(1) items, find all sets having 

that core , and replace these sets by their union. 

3. Let C’={J0,J1,……,Jm) be the resulting sets of LR(1) items. The parsing 

actions for state i are constructed from Ji . . If there is a parsing action 

conflict , the algorithm fails to produce a parser, and the grammar is said 

not to be LALR(1). 

4. The goto table is constructed as follows. If J is the union of one or more 

sets of LR(1) items, that is ,J=I1 U I2 U ……U Ik   , then the cores of 

goto(I1,X), goto(I2,X),….., goto(IK,X) are the same, since I1,I2,….IK       all 

have the same core as goto(I,X) . Then goto(J,X)=K. 

 

  

          

 

 

 

 

 

                                    

 

 

 

 

 



 

EXERCISE 6 

CODE GENERATION 

Aim:  

To generate machine code from the abstract syntax tree generated by the 

parser.  

 

Input: 

A statement or expression of given language. 

 

Output: 

Equivalent code for input statement in the form of given machine readable 

instructions. 

 

Algorithm:   

The following instruction set may be considered as target code. 

The following is a simple register-based machine, supporting a total of 17 

instructions. It has three distinct internal storage areas. The first is the set of 

8 registers, used by the individual instructions as detailed below, the second 

is an area used for the storage of variables and the third is an area used for 

the storage of program. The  instructions can be preceded by a label. This 

consists of an integer in the range 1 to 9999 and the label is followed by a 

colon to separate it from the rest of the instruction. The numerical label can 

be used as the argument to a jump instruction, as detailed below. In the 

description of the individual  instructions below, instruction argument types 

are specified as follows:  

 

R  specifies a register in the form R0, R1, R2, R3, R4, R5, R6 or R7 (or 

r0, r1, etc.).  

 

L  Specifies a numerical label (in the range 1 to 9999).  

 

V  Specifies a ``variable location'' (a variable number, or a variable 

location pointed to by a register - see below).  

 

A  Specifies a constant value, a variable location, a register or a variable 

location pointed to by a register (an indirect address). Constant values 

are specified as an integer value, optionally preceded by a minus sign, 

preceded by a # symbol. An indirect address is specified by an @ 

followed by a register. So, for example, an A-type argument could 



have the form 4 (variable number 4), #4 (the constant value 4), r4 

(register 4) or @r4 (the contents of register 4 identifies the variable 

location to be accessed).  

 

The instruction set  is defined as follows:  

 

LOAD A,R  
loads the integer value specified by A into register R.  

 

STORE R,V  

stores the value in register R to variable V.  

 

OUT R  
outputs the value in register R.  

 

NEG R  
negates the value in register R.  

 

ADD A,R  
adds the value specified by A to register R, leaving the result in 

register R.  

 

SUB A,R  

subtracts the value specified by A from register R, leaving the result 

in register R.  

 

MUL A,R  
multiplies the value specified by A by register R, leaving the result in 

register R.  

 

DIV A,R  
divides register R by the value specified by A, leaving the result in 

register R.  

 

JMP L  
causes an unconditional jump to the instruction with the label L.  

 

JEQ R,L  
jumps to the instruction with the label L if the value in register R is 

zero.  



 

JNE R,L  
jumps to the instruction with the label L if the value in register R is 

not zero.  

 

JGE R,L  
jumps to the instruction with the label L if the value in register R is 

greater than or equal to zero.  

 

JGT R,L  

jumps to the instruction with the label L if the value in register R is 

greater than zero.  

 

JLE R,L  
jumps to the instruction with the label L if the value in register R is 

less than or equal to zero.  

 

JLT R,L  
jumps to the instruction with the label L if the value in register R is 

less than zero.  

 

NOP  
is an instruction with no effect. It can be tagged by a label.  

 

STOP  
stops execution of the   machine. All   programs should terminate by 

executing a STOP instruction.  

 

 

 

 

 


